
-11434 COMPUTING MINIMUM SPANNING TREES ON R FAT-TREE v
ARCHITECTURE(U) MASSACHUSETTS INST OF TECH CAMNRIDGE
DEPT OF ELECTRICAL ENGIN.. B M MGS OCT 95

UNCLASSIFIED N@6614-9S-C-S622 F/G 12/1 M

.-

r7

N11 IN&L RUA STA 5 1-6

lu,

1& 2.

111111.25

1. 1

|iA
i4

-DEPARTMENT OF ELECTRICAL ENGINEERING AND COMPUTER SCIENCE

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
C A M B R IDGE. ASSACHU E T T S 0 2 I 3

VLSI Memo No. 85-269 October 1985

Comuting Minimum Suannina Trees
On a Fat-Tree Architecture*

(0Bruce M. Magis**

ABSTRACr

-'This paper presents two~algorithms for computing the manium spa ins
forest of an nput graph on a fat-tree architecture. One a goritha is
deterministics' and the other probabilistic. The deterministic algorit
generates 0(IVi) message sets, each of which can be del vred in O((G))
delivery cycles. The probabilistic (lgorithm generates O(jZ Vi) message sets,
each of which can be delivered in O((G)) delivery cycles.

*Submitted to the Department of Electrical Engineering and Computer
Science, MIT, in partial fulfillment of the requirements for the degree of
Bachelor of Science, May, 1985. This research was supported in part by the
Defense Advanced Research Projects Agency under contract number N00014-80-C-
0622.

Copyright (c) 1985, MIT. Memos in this series are for use inside MIT and
are not considered to be published merely by virtue of appearing in this series.
This copy is for private circulation only and may not be further copied or
distributed. References to this work should be either to the published version,
if any, or in the-form "private communication." For information about the ideas
expressed herein, contact the author directly. For information about this
series, contact Microsystems Research Center, Room 39-321, MIT, Cambridge, MA
02139; (617) 253-8138.

DTIC
Tiso-cument has bee ppov d ELECT
forU puliILlaeLn sale; itsTDE r I ~ ditibto is uniitdOV 2 2 985

A

MICROSYSTEMS PROGRAM OFFICE, Room 36-575 Telephone (617) 253-8138

... 85 10 28 1 0

'k2

Computing Minimum Spanning Trees on a Fat-Tree

Architecture

by

Bruce MacDowcll Maggs

Submitted to the Department of
Electrical Enginecring and Computer Science

in Partial Fulfillment of the

Requirements of the Degree of

Bachelor of Science

at the

S. Massachusetts Inisti tu te of Technology

May, 1985

©'Massachuisetts histitutte of Technology, 1985

Signature of Author
Department of Electrical Engineering and Computer Science

May 17, 1985

Ccrtificd By
Professor Charles E. Leiserson, Thesis Supervisor

Accepted By
Professor David Adler, Cha irmani, Depart iian Committee

COMPUTING MINIUMUM SPANNING

TREES

On a Fat-Tree Architecture I

Bruce M. Maggs
Laboratory for Computer Science

Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Abstract-

This paper presents two algorithms for computing the minimum spanning
forest of an input graph on a fat-tree architecture. One algorithm is deter-
ministic, and the other probabilistic. The deterministic algorithm generates
O(log 3 IVJ) messages sets, each of which can be delivered in O(P(G)) deliv-
ery cycles. The probabilistic.-lgfrithim generates O(log2 IV() message sets,
each of which can be deliver..d. O(j(G)) delivery cycles.

.-_....

". .; :/.

| IJ'- t ! S I.-~

I t

1This thcsis describ,' joint work with Profe.or Charlc.4 E. Lci.ron. This remrreh wam
supported in part by fhe Def-i~n- Advuccd Rems-arch Projects Agency under Contract
N00014 - 80 - C - 0622,

,'2.

.... - ~~~~~~~~~~....•-o.°.-.. ,,•.%
~.

•-...- .- .-.-. , -..

1 Introduction

In this paper we present a parallel algorithm for computing the mininmu
spanning forest of a graph on a fat-tree architecture. That is, given graph
G = (V, E) where the edges in E are weighted, we want to find a set of
edges forming a minimum spanning tree for each connected component. We
will analyze the running time not only in terms of JVi and tE, but also in
terms of how efficiently the graph has been embedded in the fat-tree.

Parallel algorithms for computing the connected components or the min-
imum spanning forest of an input graph have been presented for numerous
parallel architectures [AS, 13, I, IICS, KR, SVI. Awerbuch and Shiloach,

L- for example, have presented a ininiumu spanning forest algorithm with
running time 0(log!Vj) [AS]. Their algorithm is intended for a PRAM

- (Parallel Random Access Memory) model with CRCW (Concurrent Read
and Concurrent Write) capabilities. Each of the IEj + IVI processors in this
model has access to every word of a shared memory. While this model is
very powerful, the connectivity required to build such a shared memory is so
high that it may be impractical except on a small scale. Other authors have
presented minimun spanning tree algorithms for less highly connected but

also less general architectures. In particular, Bentley has presented a mini-
mum spanning tree algorithm for a specialized tree architecture containing
IVI processors [B]. Bentley's algorithm has running time O(V I log VI). In
this paper we present a minimum spanning forest algorithm for a new class
of universal routing networks introduced in [L, called fat-trees.

Leiserson has shown that under the assumption that only O(A) bits may
enter or leave a region R with surface area A in unit time, fat-trees have
the following universality property: given any routing network R consisting
of some fixed amount of hardware (a set P of processing elements wired
together in volume V), there exists a fat-tree built with the same amount
of hardware that can simulate the original network at a cost of a factor of
O(log I PI) in time. Thus for a given muount of hardware, a fat-tree can in
theory be used solve a problem, such as computing the mininmum spanning
forest of a graph, in almost optimal time. Leiserson's theorem indicates
that fat-trees are a powerful class of routing networks. His paper, however,
explains only how to simulate other routing networks and says nothing

%.- %.

--
. --

about how to design efficient algorithms specifically for the fat-tree. In this
paper we describe new data structures and techniques that may be useful
in future fat-tree algorithins.

We also introduce a new parameter to the running times of parallel
algorithms. The running times of sequential and parallel algorithms are
typically parameterized by the size of the input. For example, the two
parallel algorithms mentioned above have running times parameterized by
the number of vertices and edges in the input graph G. The new parameter,
which we will call the base load factor of C, P(G), is a measure of the
communication congestion that occurs when some primitive operation is
performed in parallel on the input data. We will embed each vertex v E
G in a different processor and our primitive operation will be for each
vertex to simultaneously pass a message to each neighboring vertex. In
this algorithm, the communication congestion of every message set, and
consequently of the entire algorithm can be expressed in terms of P(G).

The remainder of this paper is organized in the following manner. In
section 2 we define a fat-tree architecture and the concepts of message sets
and their load factors. In the sections 3 and 4 we describe the message set
routing results of Leiserson and Greenberg [LG and prove a short lemma
extending these results. In section 5 we describe the parallel minimum
spanning forest algorithm that we are going to implement. Our imple-
inentation requires the auxilliary data structures and subalgorithmns that
are described in section 6. Following these descriptions, we present our
mininum spanning forest algorithm in section 7. In sections 8 and 9
we present three more subalgorithms of the minimum spanning forest al-
goritlin. Section 10 is an analysis of the running time of the algorithm.
A message set synchronization scheme using the ideas of this paper is de-
scribed in section 11. We conclude with a few comments on future fat-tree
research.

2 Fat-Trees

A fat-tree is depicted in Figure 1. The underlying structure of a fat-
tree is a complete binary tree. The leaves of the binary tree are processor
elements, the internal nodes are switches, and the edges are communication

2

...-..

I I,I ! _ .- r ., , _,,.

o* r

channels. In general, the capacities of the communication channels increase
as the tree is traversed from the leaves to the root. More formally, a fat-
tree is an ordered triple FT = (P, N, C) where P is the set of processors
found at the leaves, N is the set of switches found at the internal nodes,
and C is the set of channels found at the edges. We let cap(c) denote the
capacity of a channel c E C, that is, the number of messages that may be
simultaneously sent through c. In the fat-trees that we will consider, the
channels are unidirectional and paired. That is, for each channel going up
the fat-tree there is a corresponding channel with the same capacity going
down the fat-tree. Each processor p has a unique address in the fat-tree,
l(p). In Figure 1, for example, l(pt) is 010. We assume that each processor
has a copy of its own address.

Definition 1 A message set M C P x P is a set of messages where
(PI,P2) E M is a message from processor p, to processor P2.

Because the underlying structure of a fat-tree is a tree, message (pl,p2)

must traverse the unique path from p, to P2 in FT.

Definition 2 Let load(M,c) be the number of messages in message set M
that must traverse channel c E C.

Definition 3 M is called a one-cycle message set if for all c E C,

load(M,c) < cap(c).

Because none of the channel capacities are exceeded, all of the messages
in a one-cycle message set can be delivered in one message delivery cycle.

Definition 4 The load factor, A(M, c), of a channel c E C due to a mes-
sage set M is

A(M, c) = •

Definition 5 The load factor of FT due to M, A(M), is

A(Mf) =nX,cA(Mc).

3

I... :......,,..; .._;...-.. :-" " " "" " "" " , " " " '-.- . .-..-..

one. f -v 0

001o 0oo Oil too 1 11C "
Pi

Figure 1: A Fat-trce Archtitecture

-:74

3 Routing Message Sets

Figure 2 shows an input graph G embedded in a fat-tree FT. In this figure,
the channel capacities of FT and the edge weights of G have been omitted

for clarity. Each vertex v E G is assigned to its own processor, k(v). Where
the context removes any ambiguity we will, for simplicity, let v denote O(v)

and the address of 4'(v), 1(0(v). Let v have neighbors VV, ...,,Vk in G. In
processor O(v) we store the adjacency list of v, (v1 , w,), (v2, w2), ... , (v, 10ik),

where w, denotes the weight of the edge connecting v and v,. In this ex-
ample, v, has been embedded in processor pi. In Pi we store the adjacency
list (010, 1),(100, 2), (110,2) (111,2).

Let G' be the graph that results when each edge in G is replaced by
two oppositely directed edges. In general we will use the symbol ' to de-

note the operation of replacing each edge of an undirected graph with two
oppositely directed edges. Let M(;, be the message set that arises when
each vertex in G' sends a message to each of its neighbors. We will use this

primitive operation to determine the base load factor of the input graph G.
Leiserson and Greenberg have shown ;LG" that an arbitrary mesi'-e set

gM can be broken up into one-cycle message sets on-line and can, witri high
probability, be routed in O(A(M) - log IP! log log IPj) delivery cycles. This
on-line routine algorithm assumes the existence of a hardware mechanism
to synchronize the sending of messages by the processors in P. In a later
section we will show how message set synchronization can be accomplished
with no dedicated hardware other than increased channel capacities. Us-
ing either synchronization scheme, a message set M will still, with high
probability, be delivered in O(A(M) -t- log JPJ log log 1PI) delivery cycles.

The choice of a particular on-line message set routing algorithm is not
important to the understanding of the minimum spanning tree algorithm.
Throughout the paper we will assume that we have some mechanism for
synchronizing message sets and delivery cycles within those message sets,
and for deciding which messages belong in which delivery cycles. We assume
that each processor knows when the routing of a message set M begins and
ends, and when each delivery cycle used to route M has begins and ends.
If we use the algorithm of Leiserson, and Greenberg, we can send MG, in
O(A(M,) + log P loglog PJ) delivery cycles. We define O3(G), .e base

S-...°....o.- '........-......, ' ' ,- ,' - °-- .',

load factor of G, to be A(M.,) - log,P'loglog P. We will analyze the

number of delivery cycles used by the algorithm in terms of ,3(G) and IVI,

In the literature, graph algorithms in which vertices are allowed to com-

municate only with their neighbors are called "distributed". In such algo-
rithnis a message from one vertex to another may have to pass through
O(V) intermediate vertices. Although we embed each vertex in its own

processor, our MSF algorithm is not in this sense distributed. We may pass
a message from v, to v2 even when they are not neighbors in G.

4 The Shortcut Lemma

Figure 3 shows a message set Mi in which processor p, sends a message
to p2 and p, sends a message to p3. The following lenima shows that we
may replace these two messages in AM0 with a message directly from Pi to
p3 without increasing the load factor of M0 .

Lemma 1 The Shortcut Lemma

Let pi, p2, and p3, be leaves of a fat tree. Suppose pi is sendinga _

message to p2 and p2 is sending a message to p3 in message set Mo. Then
the load factor of the message set that results when these two messages are

replaced by a message directly from Pi to P3,

M = (MoU{(PIp))) - {(PIP2),(P2,P3)},

is not greater than the load factor of the original message set Mo. That is,

A(M) <_ A(Mo).

Proof: It will suffice to show that load(M,c) _ load(Mo, c) for each c E C,
since by definition A(Afo, c) - l,,dM,.c) Since the underlying structurecap(c)

of FT is a tree, and a tree cannot contain any simple cycles, the paths

Pi -* P2 and p2 -- p3 must contain the unique simple path P, * P3.
Therefore message (pl, p3) passes through a channel c only if either (Ph P2)
or (p2, P3) does also. -

The Shortcut Lemma can be extended to show that we can replace any
subset of M0 that forms a path of messages from P, to PN with a single
message directly from pi to PN.

6

..

Figure 2: Embedding a Graph in a Fat-trce 2

7

Corollary 1 Extended Shortcut Lemma

Let (PI,P2),(P2,P3),...,(PN IIPN) E M(,. Suppose we replace messages

(PI,P2) through (pN 1,pN) with a single message (pI,pN) in nmessage set

M. That is, let M = (MO U {(P,PN)}) - {(PI,P2),(P223),...,(PN.-I,PN)}-
Then the load factor of M will not be greater than the load factor for M 1.

A (M) 5< A (MU)

Proof: The proof is by induction on N. 11
In general, we will pass a message from v, to v, in the minimum spanning

forest algorithm only if there is a path in C' from v, to v,. Furthermore,
in any set of messages (vi,tVj) that we send, there is some set of paths

from the v, to the vj such that no edge in E' is traversed more than once.
In Figure 4 this paradigm has been violated. We can remove message

(P1,P2) to shortcut (p1,p2), (p.,p3), but cannot remove it again to shortcut

(PI,P2), (P2,4). Howevcr, if we follow this paradigm then by the Extended
Shortcut Lemma the load factor of every message set will be less than or
equal to A(MGc,) and therefore will, with high probability be delivered in
3(G) or fewer delivery cycles.

5 Sollin's Algorithm

Our minimum spanning forest algorithm is an implementation of the fol-
lowing parallel algorithm attributed to Sollin in [Gil]. We want to find a

set of edges, ET, that forms a minimum spanning tree for each connected

component of G. At each stage of the algorithm, let T1,T 2, ... ,T: denote the
subtrees formed by the edges in ET.

Algorithm I Sollin's Algorithm

Each vertex vi is an isolated subtree T of G.

VHJLI there are edges not in ET connecting the T7 DO

8

2,'
~ 4. 4 **4.*

'.-

• - -_ X

I * ' 'I"

Pi. jL i.
Sl

Figure 3: Shortcutting Messages

P3

P2.,.,.

Figure 4: Illc gd Shortcilttinv

.-" • • - • " ° " " %, I) 1) ") " •. • ,r * -X " ' .. .

Simultaneously select, for each subtree T, the edge of smallest
weight connecting a vertex u E T, with a vertex v E T,i i j. if
there is more than one edge with the same siallest weight, breakC

ties by giving each edge u-v a label k(e) = (,.ax(u, v), nin(u, v))
mid choosing the edge with the smallest label. Add the selected
edge to ET.

In each iteration of Sollin's algorithm we want to quickly gather in-
formation about all of the edges adjacent to a subtree. In the following
section we explain how to build a "communication tree" for each subtree T,
through which we can quickly gather this information. The technique we
use is reminiscent of the Euler Tour Technique introduced by Tarjan and
Vishkin in [TV]. We will compute the Euler tour of each subtree and from
this tour build a communication efficient communication tree.

6 Communication Trees

6.1 Euler Cycles of Trees -

Let 2' = (V,,E,) be a tree where V C V and E, C E. Let T' = (V,, E)
be the directed graph that results when each edge in E, is replaced with 2
oppositely directed edges in E . Clearly 7' is connected and the in-degree
and out-degree of each vertex in Ti' are equal. An elementary result of
graph theory is that in any directed graph where for each vertex the in-
degree and out-degree are equal there exists a directed Euler cycle jEJ. Let
Ci' be a directed Euler cycle of T,'.

A typical step in our minimum spanning forest algorithm is to merge
the directed Euler cycles of two vertex disjoint trees T,, = (V,,,E,,) and
T = (Vt, E,) connected by an edge e between vertices ui E V,, and Vi E V.
to form the larger directed Euler cycle of T,,, = (V,, U V, E. U E. U {e}) Let
ui,-+vj and v --4 ui be two oppositely directed edges between the endpoints
of e and let Cu, and C, be directed Euler cycles of T' and 7,.

--" U O -- __+ 1 U .2 -- U.. -- t i I i -1 i 1 ---i--- UO

10

- - -"- ".°

- - - - - - - - --..,. - -.--.- -- .~..

Figure 5 illustrates the process of merging C, and C"' to form the larger
directed Euler cycle of the tree T.. = (V,, U V,,, E" U E' U {ej 2, eji}) Cycles

C., and C' are broken apart at vertices u, and v3 , and then merged by
connecting u, and v3 with edges ei3 and ei,. The resulting cycle,

u = u1,0 "-*...-"+ Ui I -+ Ui --+ *vei --* j; l -* ...
-- + V()1 "-+ ... -- Vi9 I .--+ vj. -- uieij -.-* ui 1 1 -'U..- ()11

is a directed Euler cycle of Tu,.
Throughout the execution of the algorithm we will maintain a set of

subtrees of G, {TI,T2,...,T}, and a set of directed Euler cycles of those
trees {C ,C2,...,C[}. Each vertex v E V will belong to exactly one tree
T and to the Euler cycle C(of 77. We will repeatedly merge the "7 and

their directed Euler cycles, the C by adding connecting edges. When the
algorithm terminates, the condition u,v E Vj u,v E C' 4= u,v in
same connected component of G will be satisfied.

6.2 Building Communication Trees

€ In describing the following communication tree construction algorithm, we
will consider only one of the subtrees of G, T,. The algorithm, however,
runs simultaneously on all of the subtrees formed by the edges in ET with
no communication or interference between them.

The communication tree construction algorithm requires a subroutine
that pairs vertices in a cycle. In a later section we will describe two algo-
rithins that perform this pairing, one deterministic, and the other proba-
bilistic.

We build a communication tree from the bottom up by repeatedly merg-
ing subtrees of the communication tree to form larger subtrees. We keep
the roots of the subtrees in a cycle in the order that they appear in the
cycle C' and pick pairs of them to merge. When the mergers are complete
we construct a new cycle of subtree roots by removing the vertices that are
no longer roots.

In Figure 6 we show the how a pair of subtrees are merged. When we
merge two subtrees we want the inorder traversal of the resulting subtree to
be the same as the concatenation of the inorder traversals of the merging

11

kA

-TV

12

subtrees. We do this by making the rightmost leaf of the left subtree
the root of the resulting subtree. The left and right roots of the merging
subtrees then become the left and right children of the new root. In tile
inorder traversal of the final communication tree, the nodes appear in the

same order that they appear in C'.
In Figure 7 we show a cycle of subtree roots before the mergers have

taken place. The circled pairs of vertices are the roots of the subtrees
that will merge. In Figure 8 we show the cycle of subtree roots after the
mergers have occurred. In each merge, the rightmost leaf of the left subtree

has become the new root.

Algorithm 2 Communication Tree Construction Algorithm

Let RI denote a cycle of the roots of the subtrees of communication
tree CT after i iterations of the communication tree construction
algorithm. Let T denote a subtree of CT with root r; and rightmost
leaf l after i iterations of the algorithm.

Initially, i = 0 and R0 = C'.

WHILE R' contains more than one root DO

IF RI contains only two subtree roots, rj and r

THEN

Let the vertex with the smaller label, r, or r' be consid-
ered the vertex on the left.

ELSE

Use either the deterministic or the probabilistic pairing
algorithm to pair off roots in R'.

For each ordered pair of roots (r,rk)

1. Let T, ' be the union of T, and 7'.

2. Remove from 7-1 the edge connecting 1. to his father.

(a) ri sends P. a message indicating that V is to become a
subtree root.

13

%- -

... .- -- * .-

(b) 1, sends his father a message indicating that he is no
longer a leaf

3. Make r, the left child of l;.
4. Make r' the right child of 1.

(a) r, sends rk a message containing the identity of I"
(b) r' sends l, a nessage containing the identity of ri

5. Let - = i

6. Let =l *

(a) r sends V a message containing the identity of L

7. Let R' =R'.

8. Replace rj' and rk in R' a with 1,
(a) rk sends . a niessage containing the identity of r's right

neighbor

(b) r sends his left neighbor a message containing the in-
dentity of l,

In Figure 9 a communication tree is constructed for a subtree containing
5 vertices. In the first iteration, three pairs, (a,b), (c,d), and (e,'f) are S
formcd. The roots on the left, a, c, and e become the roots of the subtrees
after the mergers, and b, d, and f are removed fron the cycle of subtree
roots. In the second iteration, c and e pair. Note how the rightmost leaf
of c's subtree, d, bccomies the root of the subtree resulting from the merge.
Now only two subtree roots are left, a and d. Assuming that a has a snaller
label than d, the final subtree, communication tree, has 6 as its root. A
quick look at the communication tree reveals that in its inorder traversal,
the vertices are visited in the same order that they appear in C'.

6.3 Communication tree Broadcasting Algorithm

Our motivation for building a communication tree CT is to provide a way to
quickly gather information from and pass information to all or the vertices
in a subtree. We can use the following algorithm to broadcast a message
from the root of CT to all of the vertices in CT. The same algorithm can
be run in reverse, with each internal node forwarding to his father only one
of the muessages that he receives fromi his children.

I 14

. . .' .. .

f ~~~~~~~.-. .- o .o.o'b "o,,'-

Algorithm 3 Communication Tree Broadcasting Algorithm

A message is passed down from the root to all of the nodes in com-
munication tree CT one level at a time. The message is first simul-

taneously sent from the root of CT to his left child, and then to his
right child. When all of his children have received the message, they
forward it to their left children, and then to their right children. The
process is repeated until the leaves of CT have received the message.

7 Minimum Spanning Forest Algorithm

We can efficiently huplement Sollin's algorithm by using a communication
tree to coordinate communication between the vertices in each subtree in
ET. Recall that the principle step in Sollin's algorithm is to choose for each
subtree T,, the edge of smallest weight connecting a vertex u E T, with a
vertex v E T3 , i - j. In our implementation, each vertex u E T sends his
neighbors in G the label of the root of C7'. He then chooses the lightest edge
connecting him to a vertex in another communication tree CT, breaking
ties lexicographicaly as described before. These potential merging edges
are then passed up CT,, which is used as a decision tree, allowing only the
lightest of the edges reaching each internal node to progress up the tree

(again we may have to break ties lexicographically). The unique lightest
edge reaching the root is used to merge the two trees that it connects, T,
and Tj. If no edge reaches the root, then T, is a minimum spanning tree
for a connected component of G, and the vertices in that component may
become idle.

After each merger occurs, a new communication tree CT is constructed
from the combined cycles C and C, C',, and the root of CT informs the
vertices in Tj of his identity.

Note that several trees may choose to merge with T,, with possibly more
than one of them wishing to break Ci at a single vertex u. We will show
how to implement directed Euler cycles so that an arbitrary number of

cycles can be efficiently merged at u.

15

°". "o.o"

.'o~

Figure 6: Mcrgi L Communication Trce Subtr'cs

" -_... C

Qe 4-4-

Figure T: Cycle of Subtre Roots Bcfore Mcrers

16

-- ".- .

• "..: .'-".-:-.

Figiure 8: Cycle oj Sulbfree Roots After melrgers

\b.-.

Figiirc 9: Building a Comncto Trce

17

P Algorithm 4 Mininium Spanning Forest

ET=0

Each vertex ui is active and is an isolated subtrec, Ti.

WILE there are active vertices DO

1. Each vertex it scnds the labl~c of the root of his commnunication
tree to his neighibors in C.

2. Each vertex it decriuizies which edge adjacent to a dlifferenlt tree

ha-s the small11est weight. Iii tile case of a tie, each edge U-u

r is given a label k(e) (niatx(u, v), min(u, v)) an(1 the edlge with
the sinallest label is chosen.

3. Each vertex ui at the leaf of a coumninication tree passes the edge
of sinallest weight that reaches himi to his rather in the comii-
nication tree. The commnunication tree is used asadcisi n tree,
aillowing only the sinallest edge reaching each internal vertex to
pass.

4. The root of each comunication tree CT broadcasts the mierging,
edge to all of the vertices in CT. If no edge has reachecd the root,
thmen the ininiiuum spanning tree of this connected comnponlent
has b~een found. lIn this case, the root of CT broadcasts a halt
instruction.

5. For each mierg-ing edge u-u, u C- T, v E 7T., inerge C: anid C'.
6. For each dirccted cycle, build a new commuunication tree.

7. The new root of each commnunication tree broadcasts his label.

In Figuires 10 through 13 we show a samiple execuition of the MSF
algoritlun. Als Figure 10 shows, the iniput graph G contains f~ur vertices,
each of which has two neighbors. liii ally each vertex vi is ain isolatedl trce

Tj, and the set of tuinintuztu spanning forest edges, Er, is cmipty.

In Figure it w.e show the chioices of nierging edges iiiade by the vi in
thie first iteratioii. E~ach vertex chooses tile lighltest edge Confnectillg hiti

.

..

to a vertex in a different subtree. As the figure shows, v(, chooses e3, v1

chooses e,, V- chooses e3 , and v3 chooses el. Note that v3 must break a tie
between edges el and e2 lexicographically.

At this point each vertex vi is the sole vertex of a tree T, so the edge
that v, picks becomes the merging edge for T. In Figure 12 we show the
cycle C' constructed from edges e1, el, and e3 . In this example one cycle
contains all of the vertices in V. For clarity, we have chosen to label the
appearances of the v, in C' a, b, c, d, e, and f.

In figure 13 we show the communication tree CT constructed from
the cycle C'. This tree is exactly that of Figure 9. At the -rd of the first
iteration, b sends all of the vertices in CT his label. Since all of the vertices
in V are contained in CT, in the secoud iteration no vertex finds that he
is adjacent to a vertex in any other communication tree and b broadcasts
a halt instruction.

8 Implementation of Directed Euler Cycles

Let T. be a subtree of G with directed Euler cycle C,. We want to main-
tain the cycle C', by storing information at the vertices that appear on the
C'. We also want to quickly merge two cycles, C. and C.' by adding two
oppositely direct edges between a vertex ui E V and v. E V ,. Thus for
each edge e E Eu' adjacent to ui, we store out,,(e), the edge to traverse out

from u, after e is traversed in to ui. In order to merge two cycles C' and
C,' by adding edges ei, and eji with endpoints ui E Vu and v, E V. we pick
an edge e' E E, adjacent to ui and an edge e" E E. adjacent to v. perform
the following operations:

Oilt" (ei) :=out,Ce)

oiltt.,eV) :=ei"
out,,} := out.,(e")
out,,(e") := i

These operations are illustrated in Figure 14.

19

• ' , .. . " . .. , - , . ._ ''''-' • • " . .

TcT ® -T 3 :QD

Figure 10: Input Graph G

vS

V V3

Figure 11: Merging Edges

20

-. " , . . - -. , " ,' * •.
.. . , ., ,, •, .. . , , • .• ,• . , . • , . . • ,• ,• , • , . 9,

C"f

Figure 12: DircctcdI Eider Cycle

Figrure 1m: ColluluiujcationiTc

21

•

IV

14 e.

it - --

-'.
-

Figre 1-1: Cycle Merging Operations

22

-7 :.

9Pairing Algorithms

Let Q: be the dIirectedI Euler cycle of tree Ti. A vertex v miay appear more
than once in such a cyle Suppose vertex vi .per atrvte ,.1If

* G'. We can give v the label k(v) = (v, 1, v,). No other vertex can have the
samle label, because the cycle is Euilerian. For simpJlicity, we shall speak
of each of these uniquely labelled appearances of v as if they we dlifferent
vertices in C@j. We may use the either of the following algorithms to pair
the vertices in C'.

9.1 Deterministic Pairing Algorithm

Algorithm 5 Deterministic Pairing

Let k(v,), be bit jof the binary encoding of k(v,).

For each active vertex v,, perforni the following operations synchronously.

Vertex v, becomes active.

FOR I :=low order bit position of k(v) to high order bit position of
k(v) DO

IF k(vjj, 1 and k(vi,1 0

THEN

Let u =v,..1.

Send a message to u.

IF l(vk)s = 0 and l(vk- ji is 1

THEN

Let u = v,-j.

Send a mnessage to u.

IF v, received a message from a vertex u

THEN

v, pairs with u and becomes in active

23

* -

Active vertices repeat the process above for 0 - 1 transitions.

In this algorithm we alternate sending messages sets consisting of ines-

sages only to right neighbors in C and only to left neighbors. At no point
do we intersperse messages to left and right neighbors.

In Figures 15 and 16 we show the execution of the deterministic pairing
algorithm on a cycle of length 6. Recall that the same vertex may appear

more than once on a cycle, but that each appearance is given a unique
label. In Figure 15 the binary representation of the unique label of each
vertex appearance is listed below that appearance.

As Figure 16 shows, two pairs are formed when 1 --+ 0 transitions are
examined. The first such transition occurs in the low order bit position
from vertex v3 (appearance (3,1)) to vertex v, (appearance (1,0)). The
second pair is found when the transition between v() (appearance (0,2))
and v 2 (appearance (2,0)) in the next bit position is examined. A third
pair is found by examining the 0 -1 transitions. Note that several I -f 0
and 0 --* 1 transitions are ignored because by the timi. they are examined,
one or both of the vertices involved have already paired.

9.2 Probabilistic Pairing Algorithm

As we will later show, the deterministic pairing algorithm has the disad-
vantage that it requires O(log fVj) iterations in which very sparse message

sets are generated. While the following probabilistic pairing algorithm is
not quaranteed to pair a constant fraction of the vertices in cycle C' we
will show that using the probabilistic pairing algorithm the communication
tree construction algorithm will, with high probability, take the same order
of iterations as when the deterministic algorithin is used. The algorithm

assumes that a processor has the capability of making a random choice.
Recall that this capability is already required by our probabilistic on-line
routing algorithm.

Algorithm 6 Probabilisiic Pairing

Let vi appear on cycle C' between vertices v,-I and vi,i.

24

•..... ..-. ,. -""."-"..."..- . .. '... .. . '' '.'....... . •. .. • . , t

0 ep 0

I C Q 0

Figure 15: Cycle with Uniquec Vertex Labels Shown

0 G

Figure 16: Final Pairings

25

For each vertex vi perform the following operations synchronously.

Randomly pick vi- 1 or vi, I to send a message to. Call this vertex u.

IF u = v, I

THEN

Send a message to u.

IF u = v, I

THEN

Send a message to u.

IF v, received a message from u

THEN

vi pairs with u and bccomies inactive

10 Analysis 0

10.1 Deterministic Pairing

Lemma 2 The deterministic pairing algorithms pairs at least of the ver-
tices in the cycle C'.

Proof: The label of every vertex vi, k(v,) must differ with each of k(v,-1)
and k(vi, 1) in at least one bit position I. If the transition from k(vi.-i),
to k(vji is 1 --- 0, then either there is a 0 --, 1 transition from k(vi) to
k(vi L), or k(v)i = k(v1.1)j. Since we treat 1 - 0 and 0 - I transitions
in separate iteration loops, every bit difference between the labels of two
neighbors is considered individually.

Assume that two neighbors are both unpaired when the algorithm ter-
minates. These two neighbors must differ in at least one bit position. Since
this difference was considered in some iteration, they should have paired
that iteration. Therefore, no two neighbors can be both unpaired when the
algorithm terminates. At the end of the algorithm, then, a vertex can be

26

• , o . . -. ",%" -. -* .--.. ..-°."-..°-.'.-.---.*o..• •.• - -,~~~~~~~~~~~~~~~~. . ..i'- -" :L . ."' -" "-'.'"-.'-."'': ".... .. *

unpaired only if both of his neighbors paired with other vertices. Thus at
least 5 of the vertices in C' are paired when the algorithm terminates. [

Lemma 3 The deterministic pairing algorithm generates O(log IVI) mes-

sage sets, each of which can be delivered in 0(6(C)) delivery cycles.

Proof: We can encode k(v) in O(log JVI) bits. The algorithm, therefore,
may perform O0(log IV I) iterations.

The algorithm operates on all cycles simultaneously. In each iteration,
two separate message sets are generated, one of messages to right neighbors,

MR, and one of messages to left neighbors, ML. The messages in one of
these message sets travel in the direction of the edges in the cycles while
the messages in the other travel in the opposite direction.

For every edge e E ET between vertices vi and v,, directed edges ei, E Ef
an(l e,, E E' appear once in the cycles of the miininium spanning forest
subtrees. Since we are assuming that the capacities of corresponding up
and down channels in our fat-tree are equal, traversing a directed edge eij

in reverse is equivalent to traversing ej,, and vice versa. Thus each of the
message sets M, and ML traverse subsets of the edges in E', and can be
delivered in O(,(G)) delivery cycles. El

Lemma 4 Using the deterministic pairing algorithm, the communication

tree construction algorithm produces trees of height O(log IV 1.

Proof: In each iteration, ? of the remaining subtree roots will be paired by

the pairing algorithm. In each merger both subtree roots become internal

nodes, and the root of the rightmost leaf of the left subtree becomes a
subtrce root. Therefore, the number of subtree roots is reduced by 1 in
each iteration. After 0(logjV) steps, only one root will remain.

As the height of a subtree grows by at most one in each iteration, each
resulting communication tree have height O(logIVI). 0

10.2 Probabilistic Pairing

We would like to show that with high probability, the communication trees
constructed using the probabilistic pairing algorithm will have the same
height as those constructed using the deterministic algorithm.

27

. - - ".'.' ... " '"-'."." ".. .'.. - ." . .".. -.', . o . ." * "- . * .

-.-.-.-. "...... ... -.". *-..,. -.--. '*....,..',.' ," "".. - l II /

0 t

Whenever two subtrees inerge into one subtree, we define the right sub-

tree to be the one that merges and the left subtree to be the one that

remains in the cycle.
Consider subtree roots ri E V and ri , I E Vil 1 below. When T and T+j

merge, T is the tree that remains in the cycle.
-ri -* ri'

Lemma 5 In any iteration of the CT construction algorithm, a subtree has

probability 1 of remaining in the cycle.

Proof: We are assuming that each vertex chooses to pair with either his

left or right neighbor in the cycle with equal probability and independent
of the choice of any other vertex. A subtree merges in a given round if
the root of that subtree chooses his right neighbor, and his right neighbor
chooses him. This probability is computed below.

Pr(v, chooses v,, 1 and vi.,, chooses v,) = Pr(v, chooses v,.,) Pr(v. I chooses vi)

- 22

A subtree remains in the cycle whenever it does not merge. This prob-
ability is computed below.

Pr(T,. remains a subtree) = I - Pr(v. chooses v, ? and v,.. chooses v,)
4

Lemma 6 The probability that a subtree T will remain in the cycle of sub-

tree roots after m rounds of the communication tree construction algorithm
is3

Proof: We are assuming that the choices made in each iteration are inde-

pendent of the choices made in any other iteration. Let M' be the event
that subtree T merges in round j. The probability that T will merge in

round m is simply 1 the probability that T, did not merge in any of the
previous m - 1 rounds. That is,

28

rI

P(M'M) = 3 1
4 4

Let M, be the event that subtree T, merges in one of the first in iterations.
This probability is the sum of a geometric series:

P(M,) 4 "

A subtree remains in the cycle after in iterations when he does not merge
in any of the first r iterations. Let R, be the event that subtree T remains
in the cycle after m iterations. The probability that a subtree does not
merge in any of the first m iterations is expressed below.

PR,) = 1 - P(M,)
3m
4

Lemma 7 The probability that the communication tree construction algo-

rithm will build any communication tree of height greater than greater than

klog IVj is)

Proof As in the previous lemma, let A be the event that subtree T, remains
in the cycle of subtree roots after m iterations. An elementary theorem of
probability is that the probability of the union of one or more events is less
than or equal to the sum of the individual probabilities of those events.
Applying this relation to the A, we have

Pr(RI U R 2 U. UJV) P(R1) + P(R2) + ... + P(Rv!)
< IVI(C).

For rn = k log n iterations, we have

29

... ", -.ft ft w, %% "

-".".".". ,' .. "-' " '' ' ' ' % ", ", "" ; "" " " " . .". .

S S

P(RI u R2 u u R) < JV1 k ''oEIVI
5 < I l k l °' ,,3 -

3

IVI
13< n --0 -

10.3 CT Construction

Lemma 8 Using the deterministic pairing algorithm, the communication
tree construction algorithm generates O(Iog2 VJ) message sets, each of which
can be delivered in O((G)) delivery cycles.

Proof: By lemma 4, the communication tree construction algorithm per-
forms O(log JVJ) iterations in which the deterministic pairing algorithm ".-
generates O(log IV 1) messages sets. By lemma 3, each of these message
sets can be delivered in O(,3(G)) delivery cycles.

In addition to the message sets generated by the pairing algorithm, the
communication tree construction algorithm generates a constant number of
messages sets in replacing the left and right subtree roots of each pair with
the rightmost leaf of the left subtree. However, by an argument analogous
to that of lemma 3, each of these message sets can be delivered in O(O(G))
delivery cycles. El

Lemma 0 Using the probabilistic pairing algorithm, the communication
tree construction algorithm generates O(log jVj) message sets, each of which
can be delivered in O(O(G)) delivery cycles.

Proof: The proof is analogous to the proof of lemma 8. We use the fact
that by an argument similar to that of lemma 3, the probabilistic pairing
algorithm generates 2 messages sets, each of which can be delivered in
0(fl(G)) delivery cycles. 0

30

........................ -. ."-'.--- .. .

.' '
" °

* ' ' '" . " .' ' *o ' .. ~' ' ' % . .- .*.' ' . o . "o ' . l m" " d h ' , % % . "

* 0

10.4 Communication Tree Broadcasting

Definition 6 The projection of an edge u -v in a communication tree
CT, where u is the father of v is the path u --* v in the directed cycle C
when v is a right child, and the path v -* u when v is a left child.

Lemma 10 The communication tree broadcasting algorithm generates O(log IV)
messages sets, each of which can be delivered in P(G) delivery cycles.

Proof: Consider the set of father to right child edges at one level of a
communication tree CT,. The projections of these edges are all paths from
the fathers to their right children. In an inorder traversal of CT, we visit
the endpoints of these edges from left to right, always visiting a father and
his right child consecutively. As these endpoints appear in C' in the same
order that they appear in the traversal, the projections of these edges are
disjoint. As in lemma 3, we can shortcut these disjoint projections in all
communication trees without increasing the load factor of M(,,. A similar
argument holds for father to left child edges. Thus we can send the left to
right message set and the right to left message set at each level in O(O(G))

* *delivery cycles.
CT, has height O(log 1vI) so that the communication broadcasting al-

gorithm generates O(log IV I) messages sets, each of which can be delivered
in O(3(G)) delivery cycles. []

10.5 Minimum Spanning Forest

Lemma 11 Using the deterministic pairing algorithm, the minimum span-
ning forest algorithm generates O(log3 IVI) message sets, each of which can
be delivered in O(13(G)) delivery cycles.

Proof: Sollin's algorithm performs 0(log IV!) iterations [GII. Below is an
analysis of the steps that occur in each iteration of the algorithm.

1. By definition, the message set generated in step I can be delivered in
0(3(G)) delivery cycles.

2. No messages are generated in step 2.

31

..

.... ,., ." ."." ." ,'..'-,"-- "."'.,".. ",. "" "," "','.'."".',.,........"......"..........."."..........'........,'...."..".,.,.".."............... "

0 UI

3. By lemma 10, step 3 generates O(log IVI) message sets, each of which
can be delivered in fl(G) delivery cycles.

4. See step 3.

5. See step 1.

6. By lemma 8, step 6 generates O(log2 IVI) message sets, each of which
can be delivered in 0(fl(G)) delivery cycles.

7. See step 3.

Lemma 12 Using the probabilistic pairing algorithm, the minimum span-
ning forest algorithm generates O(log2 IVI) message sets, each of which can
be delivered in 0(fl(G)) delivery cycles.

Proof: The proof is analogous to that of lemma 11 in which by lemma 9
step 6 generates 0(log2 IVI) message sets, each of which can be routed in
O((G)) delivery cycles. 0

11 Synchronizing Message Sets

We have previously assumed a hardware synchronization mechanism that
lets each processor know when the routing of each message set is to start
and end, and when each delivery cycle of that message set is to start and
end. With fixed length messages, all delivery cycles require the same fixed
number of clock cycles. Thus if a processor knows when a message set is to
start, he can keep synchronized with each delivery cycle by keeping a local
counter.

We would like to remove the need for a hardware message set synchro-
nization mechanism. The difficulty is that the exact number of delivery
cycles needed to route a message set is not known until all of the mes-
sages in that set have reached their destinations. Furthermore, different
processors will finish sending their messages in different delivery cycles.
However, by computing off-line a communication tree that contains all of

32

. . .

* I

the processors in the fat-tree, we can provide a message set synchroniza-
tion mechanism with no dedicated hardware other than an increase in each

channel capacity of 1.
In Figure 17 we show the cycle from which we will build the synchro-

nization communication tree. This cycle contains the processors in FT in

the order that they are visited in an inorder traversal of FT. Figure 18
shows that the the load of each channel due to this cycle is at most 1. Fig-

ure 19 shows the process of building the synchronization communication
tree. This communication tree is computed once off-line and never changes.

Using the communication tree illustrated in Figure 19, the synchroniza-
tion algorithm is as follows. To start a message set, processor p3 broadcasts
a start signal down the communication tree. In this case each of the 21og2 1PI
messages sets generated by the communication tree broadcasting algorithm
will require exacty one delivery cycle. When a processor receives a start sig-
nal, he begins sending his messages in Al in the next delivery cycle. When
a processor has finished sending all of his messages, he waits for each of

his children in the synchronization communication tree to send him a mes-
sage confirming that they have finished sending their messages, and then

qb forwards the message to his father in the synchronization communication
tree.

The synchronization messages will not reduce the probability of any
message in M being successfully transmitted, for although at each concen-
trator switch the number of messages arriving may have increased by I, the
capacity also increased by 1.

For load(c) > cap(c) we have the following relation:

A'(c) = oad(c)- I
cap(C)-1

cap(c)

< A(c)

Thus we have actually decreased the load factor of each channel.
These synchronization messages may add an additional log IPj+log log IPJ

delivery cycles to the number of cycles needed to route At, for example in
the case when all processors finish sending their messages in Af in the same
delivery cycle.

33

%)%

.' . .. ' " . .'.". , - " '' _.' . .: . " " . -,-"-.-,". '. . . ' . *.,°~lllu i m - p ,,
• . ,l ".--.'. " " i_ - -- D a q_"a,..-.nnu -

-o-

. a."-

¢..

" 3 1 .,a.

." - .-. °° . °. . , °' -. °" . Oo. ,...°.. ,". . ".. ° °° "' .. ° '.

I '* 1.

~/

PP

Figure 19: Synchronization Communication Tree

12 Comments

The algorithms described in the previous sections are all SIMD (Single
Instruction, Multiple Data) in nature. In each instruction cycle, every pro-
cessor executes the saine instruction. Processors behavc differently when

they operate on different data. We chose to design our algorithm using the

SIMD paradigm only because it is conceptually simpler than the MNI.D
(Multiple Instruction, Multiple Data) paradigm. We do jiot mean to im-
ply that parallel algorithms should, in general, use the SIM\D paradigm.
Similarly, we chose a very simple message passing protocol. The only in-

teraction between a sending processor and a receiving processor is a final
acknowledigement. More coiplicated mechanisms can be realized with es-
scntially the same hardware. For example, instead of passing a message to
the receiving processor, the sending processor might send a request to read
some portion of the receiving processor's memory. The receiving processor
would then reply with that data instead of sending a simple acknowledge-
ment. There may be profound reasons for choosing the SIMi) or the MI.ID

paradigni, or for using some particular message sending protocol, but we
have not dealt with these issues in this paper.

In this paper we have examined a techniquie for keeping comimnication

costs down throughout a parallel algorithm. Our technique is to construct
"commuication trees" from cycles of processors. If we think of each cycle of

35

J.-2.

... - .- .-•• "• - - "- "- .-. .-'.. ."'' . ."""" "."* *.. "-" "- " -,-" -" ."' ." "' "." .' -Z , - ,

[2. . . -...].,- 2",- .-?.- ..." -.: ., . °-,.... ,--," - - .] -: -."....'...-.....,,=.,.. .

processors as a set of processors, then we can imagine using communication
trees to implement a variety of basic set operations. Our current algorithms
for even such simple operations as computing the union ol two sets are very
expensive. We must discard the communication tree of each set and build
a completely new communication tree. We expect that future research will
explore such problems as merging two communication trees directly, and
computing the most efficient communication tree for a set of processors.

Finally, the message set routing results of Leiserson and Greenberg [L,
LGI show that no matter how large the load factor of a message set, we can,
for a given amount of hardware, deliver it in almost optimal time. Thus if
a problem takes a long time to run on a fat-tree, then it will take a long
time to run on any architecture. These observations lead to the somewhat
obvious conclusion that we should examine those problems for which we
only need to generate message sets with small load factors.

13 Acknowledgements
- -.

I would like to thank Charles Leiserson for guiding me through this research S
and for insisting that my writing will improve. I would also like to thank
Tom Cormen, Ron Greenberg, Alex Ishii, Miller Maley, and Cindy Phillips
for their suggestions and encouragement.

14 Bibliography

[AS] B. Awerbuch and Y. Shiloach, New Connectivity and MSF Algo-
rithms for Ultracomputer and PRAM, Proceedings of the 1983 Inter-

national Conference on Parallel Processing (August 1983), 175-179.

[B] J. L. Bentley, A Parallel Algorithm for Constructing Minimum Span-
ning Trees, Journal of Algorithms 1 (1980), 51-59.

[El S. Even, Graph Algorithms, Section 1.3, Computer Science Press Inc.,
Rockville Maryland, 1979.

36 -.

.- : . - J ~ -. . -.:. . ., . , -.- ,- ,. .,-.: ,..

[H] D. S. Iirschberg, Parallel Algorithms for the Transitive Closure and
the Connected Components Problems, Proceedings of the Eighth An-

nual ACM Symposium on the Theory of Computing (1983), 55-57.

[HCS] D. S. Hirschberg, A. K. Chandra, D. V. Sarwate, Computing Con-

nected Components on Parallel Computers, Communications of the

ACM 22, 8 (August 1979), 461-464.

[KR] S. C. Kwan and W. L. Ruzzo, Adaptive Parallel Algorithms for Find-

ing Minimum Spanning Trees, Proceedings of the 1984 International

Conference on Parallel Processing (August 1984), 439-443.

[L] C. E. Leiserson, Fat-Trees: Universal Networks for Hardware-Efficient
Supercomputing, 1985 iternational Conference on Parallel Process-

ing, IEEE, to appear.

[LGI C. E. Leiserson and R. Greenberg, Randomized Routing on Fat-Trees,

Proceedings of the Seventeenth Annual ACM Symposium on the The-
ory of Computing (1985).

[SV] Y. Shiloach and U. Vishkin, An O(log n) Parallel Connectivity Algo-
rithm, Journal of Algorithms 3 (1982), 57-67.

[HG! S. E. Goodman and S.T. Hedetniemi, Introduction to the Design and

Analysis of Algorithms, Section 5.5, McGraw-Hill, 1977.

[TV] R. E. Tarjan and U. Vishkin, Finding Biconnected Components and

Computing Tree Functions in Logarithmic Parallel Time, Proceed-
ings of the 25th Annual Symposium on the Foundations of Computer

Science (October 1984), 12-20.

37

FILMED

D1'IJ

